class ActionDispatch::Journey::NFA::TransitionTable

:nodoc:
:nodoc:
:nodoc:

def []=(i, f, s)

def []=(i, f, s)
  @table[f][i] = s
end

def accepting?(state)

def accepting?(state)
  accepting == state
end

def accepting_states

def accepting_states
  [accepting]
end

def add_memo(idx, memo)

def add_memo(idx, memo)
  @memos[idx] = memo
end

def alphabet

def alphabet
  inverted.values.map(&:keys).flatten.compact.uniq.sort_by { |x| x.to_s }
end

def eclosure(t)

+t+ on nil-transitions alone.
Returns a set of NFA states reachable from some NFA state +s+ in set
def eclosure(t)
  stack = Array(t)
  seen  = {}
  children = []
  until stack.empty?
    s = stack.pop
    next if seen[s]
    seen[s] = true
    children << s
    stack.concat(inverted[s][nil])
  end
  children.uniq
end

def following_states(t, a)

+a+ from some state +s+ in +t+.
Returns set of NFA states to which there is a transition on ast symbol
def following_states(t, a)
  Array(t).map { |s| inverted[s][a] }.flatten.uniq
end

def generalized_table

Edges of the GTG are regular expressions.

are reduced like a DFA, but the table must be simulated like an NFA.
Returns a generalized transition graph with reduced states. The states
def generalized_table
  gt       = GTG::TransitionTable.new
  marked   = {}
  state_id = Hash.new { |h,k| h[k] = h.length }
  alphabet = self.alphabet
  stack = [eclosure(0)]
  until stack.empty?
    state = stack.pop
    next if marked[state] || state.empty?
    marked[state] = true
    alphabet.each do |alpha|
      next_state = eclosure(following_states(state, alpha))
      next if next_state.empty?
      gt[state_id[state], state_id[next_state]] = alpha
      stack << next_state
    end
  end
  final_groups = state_id.keys.find_all { |s|
    s.sort.last == accepting
  }
  final_groups.each do |states|
    id = state_id[states]
    gt.add_accepting(id)
    save = states.find { |s|
      @memos.key?(s) && eclosure(s).sort.last == accepting
    }
    gt.add_memo(id, memo(save))
  end
  gt
end

def initialize

def initialize
  @table     = Hash.new { |h,f| h[f] = {} }
  @memos     = {}
  @accepting = nil
  @inverted  = nil
end

def inverted

def inverted
  return @inverted if @inverted
  @inverted = Hash.new { |h, from|
    h[from] = Hash.new { |j, s| j[s] = [] }
  }
  @table.each { |to, hash|
    hash.each { |from, sym|
      if sym
        sym = Nodes::Symbol === sym ? sym.regexp : sym.left
      end
      @inverted[from][sym] << to
    }
  }
  @inverted
end

def memo(idx)

def memo(idx)
  @memos[idx]
end

def merge(left, right)

def merge(left, right)
  @memos[right] = @memos.delete(left)
  @table[right] = @table.delete(left)
end

def move(t, a)

+a+ from some state +s+ in +t+.
Returns set of NFA states to which there is a transition on ast symbol
def move(t, a)
  Array(t).map { |s|
    inverted[s].keys.compact.find_all { |sym|
      sym === a
    }.map { |sym| inverted[s][sym] }
  }.flatten.uniq
end

def states

def states
  (@table.keys + @table.values.map(&:keys).flatten).uniq
end

def transitions

def transitions
  @table.map { |to, hash|
    hash.map { |from, sym| [from, sym, to] }
  }.flatten(1)
end