lib/anthropic/models/messages/batch_create_params.rb



# frozen_string_literal: true

module Anthropic
  module Models
    module Messages
      # @see Anthropic::Resources::Messages::Batches#create
      class BatchCreateParams < Anthropic::Internal::Type::BaseModel
        # @!parse
        #   extend Anthropic::Internal::Type::RequestParameters::Converter
        include Anthropic::Internal::Type::RequestParameters

        # @!attribute requests
        #   List of requests for prompt completion. Each is an individual request to create
        #   a Message.
        #
        #   @return [Array<Anthropic::Models::Messages::BatchCreateParams::Request>]
        required :requests,
                 -> { Anthropic::Internal::Type::ArrayOf[Anthropic::Models::Messages::BatchCreateParams::Request] }

        # @!parse
        #   # @param requests [Array<Anthropic::Models::Messages::BatchCreateParams::Request>]
        #   # @param request_options [Anthropic::RequestOptions, Hash{Symbol=>Object}]
        #   #
        #   def initialize(requests:, request_options: {}, **) = super

        # def initialize: (Hash | Anthropic::Internal::Type::BaseModel) -> void

        class Request < Anthropic::Internal::Type::BaseModel
          # @!attribute custom_id
          #   Developer-provided ID created for each request in a Message Batch. Useful for
          #   matching results to requests, as results may be given out of request order.
          #
          #   Must be unique for each request within the Message Batch.
          #
          #   @return [String]
          required :custom_id, String

          # @!attribute params
          #   Messages API creation parameters for the individual request.
          #
          #   See the [Messages API reference](/en/api/messages) for full documentation on
          #   available parameters.
          #
          #   @return [Anthropic::Models::Messages::BatchCreateParams::Request::Params]
          required :params, -> { Anthropic::Models::Messages::BatchCreateParams::Request::Params }

          # @!parse
          #   # @param custom_id [String]
          #   # @param params [Anthropic::Models::Messages::BatchCreateParams::Request::Params]
          #   #
          #   def initialize(custom_id:, params:, **) = super

          # def initialize: (Hash | Anthropic::Internal::Type::BaseModel) -> void

          # @see Anthropic::Models::Messages::BatchCreateParams::Request#params
          class Params < Anthropic::Internal::Type::BaseModel
            # @!attribute max_tokens
            #   The maximum number of tokens to generate before stopping.
            #
            #   Note that our models may stop _before_ reaching this maximum. This parameter
            #   only specifies the absolute maximum number of tokens to generate.
            #
            #   Different models have different maximum values for this parameter. See
            #   [models](https://docs.anthropic.com/en/docs/models-overview) for details.
            #
            #   @return [Integer]
            required :max_tokens, Integer

            # @!attribute messages
            #   Input messages.
            #
            #   Our models are trained to operate on alternating `user` and `assistant`
            #   conversational turns. When creating a new `Message`, you specify the prior
            #   conversational turns with the `messages` parameter, and the model then generates
            #   the next `Message` in the conversation. Consecutive `user` or `assistant` turns
            #   in your request will be combined into a single turn.
            #
            #   Each input message must be an object with a `role` and `content`. You can
            #   specify a single `user`-role message, or you can include multiple `user` and
            #   `assistant` messages.
            #
            #   If the final message uses the `assistant` role, the response content will
            #   continue immediately from the content in that message. This can be used to
            #   constrain part of the model's response.
            #
            #   Example with a single `user` message:
            #
            #   ```json
            #   [{ "role": "user", "content": "Hello, Claude" }]
            #   ```
            #
            #   Example with multiple conversational turns:
            #
            #   ```json
            #   [
            #     { "role": "user", "content": "Hello there." },
            #     { "role": "assistant", "content": "Hi, I'm Claude. How can I help you?" },
            #     { "role": "user", "content": "Can you explain LLMs in plain English?" }
            #   ]
            #   ```
            #
            #   Example with a partially-filled response from Claude:
            #
            #   ```json
            #   [
            #     {
            #       "role": "user",
            #       "content": "What's the Greek name for Sun? (A) Sol (B) Helios (C) Sun"
            #     },
            #     { "role": "assistant", "content": "The best answer is (" }
            #   ]
            #   ```
            #
            #   Each input message `content` may be either a single `string` or an array of
            #   content blocks, where each block has a specific `type`. Using a `string` for
            #   `content` is shorthand for an array of one content block of type `"text"`. The
            #   following input messages are equivalent:
            #
            #   ```json
            #   { "role": "user", "content": "Hello, Claude" }
            #   ```
            #
            #   ```json
            #   { "role": "user", "content": [{ "type": "text", "text": "Hello, Claude" }] }
            #   ```
            #
            #   Starting with Claude 3 models, you can also send image content blocks:
            #
            #   ```json
            #   {
            #     "role": "user",
            #     "content": [
            #       {
            #         "type": "image",
            #         "source": {
            #           "type": "base64",
            #           "media_type": "image/jpeg",
            #           "data": "/9j/4AAQSkZJRg..."
            #         }
            #       },
            #       { "type": "text", "text": "What is in this image?" }
            #     ]
            #   }
            #   ```
            #
            #   We currently support the `base64` source type for images, and the `image/jpeg`,
            #   `image/png`, `image/gif`, and `image/webp` media types.
            #
            #   See [examples](https://docs.anthropic.com/en/api/messages-examples#vision) for
            #   more input examples.
            #
            #   Note that if you want to include a
            #   [system prompt](https://docs.anthropic.com/en/docs/system-prompts), you can use
            #   the top-level `system` parameter — there is no `"system"` role for input
            #   messages in the Messages API.
            #
            #   @return [Array<Anthropic::Models::MessageParam>]
            required :messages, -> { Anthropic::Internal::Type::ArrayOf[Anthropic::Models::MessageParam] }

            # @!attribute model
            #   The model that will complete your prompt.\n\nSee
            #   [models](https://docs.anthropic.com/en/docs/models-overview) for additional
            #   details and options.
            #
            #   @return [Symbol, String, Anthropic::Models::Model]
            required :model, union: -> { Anthropic::Models::Model }

            # @!attribute [r] metadata
            #   An object describing metadata about the request.
            #
            #   @return [Anthropic::Models::Metadata, nil]
            optional :metadata, -> { Anthropic::Models::Metadata }

            # @!parse
            #   # @return [Anthropic::Models::Metadata]
            #   attr_writer :metadata

            # @!attribute [r] stop_sequences
            #   Custom text sequences that will cause the model to stop generating.
            #
            #   Our models will normally stop when they have naturally completed their turn,
            #   which will result in a response `stop_reason` of `"end_turn"`.
            #
            #   If you want the model to stop generating when it encounters custom strings of
            #   text, you can use the `stop_sequences` parameter. If the model encounters one of
            #   the custom sequences, the response `stop_reason` value will be `"stop_sequence"`
            #   and the response `stop_sequence` value will contain the matched stop sequence.
            #
            #   @return [Array<String>, nil]
            optional :stop_sequences, Anthropic::Internal::Type::ArrayOf[String]

            # @!parse
            #   # @return [Array<String>]
            #   attr_writer :stop_sequences

            # @!attribute [r] stream
            #   Whether to incrementally stream the response using server-sent events.
            #
            #   See [streaming](https://docs.anthropic.com/en/api/messages-streaming) for
            #   details.
            #
            #   @return [Boolean, nil]
            optional :stream, Anthropic::Internal::Type::Boolean

            # @!parse
            #   # @return [Boolean]
            #   attr_writer :stream

            # @!attribute [r] system_
            #   System prompt.
            #
            #   A system prompt is a way of providing context and instructions to Claude, such
            #   as specifying a particular goal or role. See our
            #   [guide to system prompts](https://docs.anthropic.com/en/docs/system-prompts).
            #
            #   @return [String, Array<Anthropic::Models::TextBlockParam>, nil]
            optional :system_,
                     union: -> { Anthropic::Models::Messages::BatchCreateParams::Request::Params::System },
                     api_name: :system

            # @!parse
            #   # @return [String, Array<Anthropic::Models::TextBlockParam>]
            #   attr_writer :system_

            # @!attribute [r] temperature
            #   Amount of randomness injected into the response.
            #
            #   Defaults to `1.0`. Ranges from `0.0` to `1.0`. Use `temperature` closer to `0.0`
            #   for analytical / multiple choice, and closer to `1.0` for creative and
            #   generative tasks.
            #
            #   Note that even with `temperature` of `0.0`, the results will not be fully
            #   deterministic.
            #
            #   @return [Float, nil]
            optional :temperature, Float

            # @!parse
            #   # @return [Float]
            #   attr_writer :temperature

            # @!attribute [r] thinking
            #   Configuration for enabling Claude's extended thinking.
            #
            #   When enabled, responses include `thinking` content blocks showing Claude's
            #   thinking process before the final answer. Requires a minimum budget of 1,024
            #   tokens and counts towards your `max_tokens` limit.
            #
            #   See
            #   [extended thinking](https://docs.anthropic.com/en/docs/build-with-claude/extended-thinking)
            #   for details.
            #
            #   @return [Anthropic::Models::ThinkingConfigEnabled, Anthropic::Models::ThinkingConfigDisabled, nil]
            optional :thinking, union: -> { Anthropic::Models::ThinkingConfigParam }

            # @!parse
            #   # @return [Anthropic::Models::ThinkingConfigEnabled, Anthropic::Models::ThinkingConfigDisabled]
            #   attr_writer :thinking

            # @!attribute [r] tool_choice
            #   How the model should use the provided tools. The model can use a specific tool,
            #   any available tool, decide by itself, or not use tools at all.
            #
            #   @return [Anthropic::Models::ToolChoiceAuto, Anthropic::Models::ToolChoiceAny, Anthropic::Models::ToolChoiceTool, Anthropic::Models::ToolChoiceNone, nil]
            optional :tool_choice, union: -> { Anthropic::Models::ToolChoice }

            # @!parse
            #   # @return [Anthropic::Models::ToolChoiceAuto, Anthropic::Models::ToolChoiceAny, Anthropic::Models::ToolChoiceTool, Anthropic::Models::ToolChoiceNone]
            #   attr_writer :tool_choice

            # @!attribute [r] tools
            #   Definitions of tools that the model may use.
            #
            #   If you include `tools` in your API request, the model may return `tool_use`
            #   content blocks that represent the model's use of those tools. You can then run
            #   those tools using the tool input generated by the model and then optionally
            #   return results back to the model using `tool_result` content blocks.
            #
            #   Each tool definition includes:
            #
            #   - `name`: Name of the tool.
            #   - `description`: Optional, but strongly-recommended description of the tool.
            #   - `input_schema`: [JSON schema](https://json-schema.org/draft/2020-12) for the
            #     tool `input` shape that the model will produce in `tool_use` output content
            #     blocks.
            #
            #   For example, if you defined `tools` as:
            #
            #   ```json
            #   [
            #     {
            #       "name": "get_stock_price",
            #       "description": "Get the current stock price for a given ticker symbol.",
            #       "input_schema": {
            #         "type": "object",
            #         "properties": {
            #           "ticker": {
            #             "type": "string",
            #             "description": "The stock ticker symbol, e.g. AAPL for Apple Inc."
            #           }
            #         },
            #         "required": ["ticker"]
            #       }
            #     }
            #   ]
            #   ```
            #
            #   And then asked the model "What's the S&P 500 at today?", the model might produce
            #   `tool_use` content blocks in the response like this:
            #
            #   ```json
            #   [
            #     {
            #       "type": "tool_use",
            #       "id": "toolu_01D7FLrfh4GYq7yT1ULFeyMV",
            #       "name": "get_stock_price",
            #       "input": { "ticker": "^GSPC" }
            #     }
            #   ]
            #   ```
            #
            #   You might then run your `get_stock_price` tool with `{"ticker": "^GSPC"}` as an
            #   input, and return the following back to the model in a subsequent `user`
            #   message:
            #
            #   ```json
            #   [
            #     {
            #       "type": "tool_result",
            #       "tool_use_id": "toolu_01D7FLrfh4GYq7yT1ULFeyMV",
            #       "content": "259.75 USD"
            #     }
            #   ]
            #   ```
            #
            #   Tools can be used for workflows that include running client-side tools and
            #   functions, or more generally whenever you want the model to produce a particular
            #   JSON structure of output.
            #
            #   See our [guide](https://docs.anthropic.com/en/docs/tool-use) for more details.
            #
            #   @return [Array<Anthropic::Models::Tool, Anthropic::Models::ToolBash20250124, Anthropic::Models::ToolTextEditor20250124>, nil]
            optional :tools, -> { Anthropic::Internal::Type::ArrayOf[union: Anthropic::Models::ToolUnion] }

            # @!parse
            #   # @return [Array<Anthropic::Models::Tool, Anthropic::Models::ToolBash20250124, Anthropic::Models::ToolTextEditor20250124>]
            #   attr_writer :tools

            # @!attribute [r] top_k
            #   Only sample from the top K options for each subsequent token.
            #
            #   Used to remove "long tail" low probability responses.
            #   [Learn more technical details here](https://towardsdatascience.com/how-to-sample-from-language-models-682bceb97277).
            #
            #   Recommended for advanced use cases only. You usually only need to use
            #   `temperature`.
            #
            #   @return [Integer, nil]
            optional :top_k, Integer

            # @!parse
            #   # @return [Integer]
            #   attr_writer :top_k

            # @!attribute [r] top_p
            #   Use nucleus sampling.
            #
            #   In nucleus sampling, we compute the cumulative distribution over all the options
            #   for each subsequent token in decreasing probability order and cut it off once it
            #   reaches a particular probability specified by `top_p`. You should either alter
            #   `temperature` or `top_p`, but not both.
            #
            #   Recommended for advanced use cases only. You usually only need to use
            #   `temperature`.
            #
            #   @return [Float, nil]
            optional :top_p, Float

            # @!parse
            #   # @return [Float]
            #   attr_writer :top_p

            # @!parse
            #   # Messages API creation parameters for the individual request.
            #   #
            #   # See the [Messages API reference](/en/api/messages) for full documentation on
            #   # available parameters.
            #   #
            #   # @param max_tokens [Integer]
            #   # @param messages [Array<Anthropic::Models::MessageParam>]
            #   # @param model [Symbol, String, Anthropic::Models::Model]
            #   # @param metadata [Anthropic::Models::Metadata]
            #   # @param stop_sequences [Array<String>]
            #   # @param stream [Boolean]
            #   # @param system_ [String, Array<Anthropic::Models::TextBlockParam>]
            #   # @param temperature [Float]
            #   # @param thinking [Anthropic::Models::ThinkingConfigEnabled, Anthropic::Models::ThinkingConfigDisabled]
            #   # @param tool_choice [Anthropic::Models::ToolChoiceAuto, Anthropic::Models::ToolChoiceAny, Anthropic::Models::ToolChoiceTool, Anthropic::Models::ToolChoiceNone]
            #   # @param tools [Array<Anthropic::Models::Tool, Anthropic::Models::ToolBash20250124, Anthropic::Models::ToolTextEditor20250124>]
            #   # @param top_k [Integer]
            #   # @param top_p [Float]
            #   #
            #   def initialize(
            #     max_tokens:,
            #     messages:,
            #     model:,
            #     metadata: nil,
            #     stop_sequences: nil,
            #     stream: nil,
            #     system_: nil,
            #     temperature: nil,
            #     thinking: nil,
            #     tool_choice: nil,
            #     tools: nil,
            #     top_k: nil,
            #     top_p: nil,
            #     **
            #   )
            #     super
            #   end

            # def initialize: (Hash | Anthropic::Internal::Type::BaseModel) -> void

            # System prompt.
            #
            # A system prompt is a way of providing context and instructions to Claude, such
            # as specifying a particular goal or role. See our
            # [guide to system prompts](https://docs.anthropic.com/en/docs/system-prompts).
            #
            # @see Anthropic::Models::Messages::BatchCreateParams::Request::Params#system_
            module System
              extend Anthropic::Internal::Type::Union

              variant String

              variant -> { Anthropic::Models::Messages::BatchCreateParams::Request::Params::System::TextBlockParamArray }

              # @!parse
              #   # @return [Array(String, Array<Anthropic::Models::TextBlockParam>)]
              #   def self.variants; end

              TextBlockParamArray = Anthropic::Internal::Type::ArrayOf[-> { Anthropic::Models::TextBlockParam }]
            end
          end
        end
      end
    end
  end
end