class Minitest::Benchmark
def self.bench_exp min, max, base = 10
def self.bench_exp min, max, base = 10 min = (Math.log10(min) / Math.log10(base)).to_i max = (Math.log10(max) / Math.log10(base)).to_i (min..max).map { |m| base ** m }.to_a end
def self.bench_linear min, max, step = 10
def self.bench_linear min, max, step = 10 (min..max).step(step).to_a end
def self.bench_range
def self.bench_range bench_exp 1, 10_000 end
def self.io # :nodoc:
def self.io # :nodoc: @io end
def self.run reporter, options = {} # :nodoc:
def self.run reporter, options = {} # :nodoc: @io = reporter.io super end
def self.runnable_methods # :nodoc:
def self.runnable_methods # :nodoc: methods_matching(/^bench_/) end
def assert_performance validation, &work
def assert_performance validation, &work range = self.class.bench_range io.print self.name times = [] range.each do |x| GC.start t0 = Minitest.clock_time instance_exec(x, &work) t = Minitest.clock_time - t0 io.print "\t%9.6f" % t times << t end io.puts validation[range, times] end
def assert_performance_constant threshold = 0.99, &work
def assert_performance_constant threshold = 0.99, &work validation = proc do |range, times| a, b, rr = fit_linear range, times assert_in_delta 0, b, 1 - threshold [a, b, rr] end assert_performance validation, &work end
def assert_performance_exponential threshold = 0.99, &work
def assert_performance_exponential threshold = 0.99, &work assert_performance validation_for_fit(:exponential, threshold), &work end
def assert_performance_linear threshold = 0.99, &work
def assert_performance_linear threshold = 0.99, &work assert_performance validation_for_fit(:linear, threshold), &work end
def assert_performance_logarithmic threshold = 0.99, &work
def assert_performance_logarithmic threshold = 0.99, &work assert_performance validation_for_fit(:logarithmic, threshold), &work end
def assert_performance_power threshold = 0.99, &work
def assert_performance_power threshold = 0.99, &work assert_performance validation_for_fit(:power, threshold), &work end
def fit_error xys
def fit_error xys y_bar = sigma(xys) { |_, y| y } / xys.size.to_f ss_tot = sigma(xys) { |_, y| (y - y_bar) ** 2 } ss_err = sigma(xys) { |x, y| (yield(x) - y) ** 2 } 1 - (ss_err / ss_tot) end
def fit_exponential xs, ys
def fit_exponential xs, ys n = xs.size xys = xs.zip ys sxlny = sigma(xys) { |x, y| x * Math.log(y) } slny = sigma(xys) { |_, y| Math.log(y) } sx2 = sigma(xys) { |x, _| x * x } sx = sigma xs c = n * sx2 - sx ** 2 a = (slny * sx2 - sx * sxlny) / c b = ( n * sxlny - sx * slny ) / c return Math.exp(a), b, fit_error(xys) { |x| Math.exp(a + b * x) } end
def fit_linear xs, ys
def fit_linear xs, ys n = xs.size xys = xs.zip ys sx = sigma xs sy = sigma ys sx2 = sigma(xs) { |x| x ** 2 } sxy = sigma(xys) { |x, y| x * y } c = n * sx2 - sx**2 a = (sy * sx2 - sx * sxy) / c b = ( n * sxy - sx * sy ) / c return a, b, fit_error(xys) { |x| a + b * x } end
def fit_logarithmic xs, ys
def fit_logarithmic xs, ys n = xs.size xys = xs.zip ys slnx2 = sigma(xys) { |x, _| Math.log(x) ** 2 } slnx = sigma(xys) { |x, _| Math.log(x) } sylnx = sigma(xys) { |x, y| y * Math.log(x) } sy = sigma(xys) { |_, y| y } c = n * slnx2 - slnx ** 2 b = ( n * sylnx - sy * slnx ) / c a = (sy - b * slnx) / n return a, b, fit_error(xys) { |x| a + b * Math.log(x) } end
def fit_power xs, ys
def fit_power xs, ys n = xs.size xys = xs.zip ys slnxlny = sigma(xys) { |x, y| Math.log(x) * Math.log(y) } slnx = sigma(xs) { |x | Math.log(x) } slny = sigma(ys) { | y| Math.log(y) } slnx2 = sigma(xs) { |x | Math.log(x) ** 2 } b = (n * slnxlny - slnx * slny) / (n * slnx2 - slnx ** 2) a = (slny - b * slnx) / n return Math.exp(a), b, fit_error(xys) { |x| (Math.exp(a) * (x ** b)) } end
def io # :nodoc:
def io # :nodoc: self.class.io end
def sigma enum, &block
def sigma enum, &block enum = enum.map(&block) if block enum.sum end
def validation_for_fit msg, threshold
def validation_for_fit msg, threshold proc do |range, times| a, b, rr = send "fit_#{msg}", range, times assert_operator rr, :>=, threshold [a, b, rr] end end