class Multiwoven::Integrations::Source::OpenAI::Client
def check_connection(connection_config)
def check_connection(connection_config) connection_config = prepare_config(connection_config) response = send_request( url: OPEN_AI_URL, http_method: HTTP_POST, payload: JSON.parse(connection_config[:request_format]), headers: auth_headers(connection_config[:api_key]), config: connection_config[:config] ) success?(response) ? success_status : failure_status(nil) rescue StandardError => e handle_exception(e, { context: "OPEN AI:CHECK_CONNECTION:EXCEPTION", type: "error" }) failure_status(e) end
def discover(_connection_config = nil)
def discover(_connection_config = nil) catalog_json = read_json(CATALOG_SPEC_PATH) catalog = build_catalog(catalog_json) catalog.to_multiwoven_message rescue StandardError => e handle_exception(e, { context: "OPEN AI:DISCOVER:EXCEPTION", type: "error" }) end
def extract_data_entries(chunk)
def extract_data_entries(chunk) chunk.split(/^data: /).map(&:strip).reject(&:empty?) end
def parse_json(json_string)
def parse_json(json_string) JSON.parse(json_string) rescue JSON::ParserError => e handle_exception(e, { context: "OPEN AI:PARSE_JSON:EXCEPTION", type: "error" }) {} end
def prepare_config(config)
def prepare_config(config) config.with_indifferent_access.tap do |conf| conf[:config][:timeout] ||= 30 end end
def process_response(response)
def process_response(response) if success?(response) data = JSON.parse(response.body) [RecordMessage.new(data: data, emitted_at: Time.now.to_i).to_multiwoven_message] else create_log_message("OPEN AI:RUN_MODEL", "error", "request failed: #{response.body}") end rescue StandardError => e handle_exception(e, { context: "OPEN AI:PROCESS_RESPONSE:EXCEPTION", type: "error" }) end
def process_streaming_response(chunk)
def process_streaming_response(chunk) data_entries = extract_data_entries(chunk) data_entries.each do |entry| next if entry == "[DONE]" data = parse_json(entry) yield [RecordMessage.new(data: data, emitted_at: Time.now.to_i).to_multiwoven_message] if block_given? rescue StandardError => e handle_exception(e, { context: "OPEN AI:PROCESS_STREAMING_RESPONSE:EXCEPTION", type: "error", entry: entry }) end end
def read(sync_config)
def read(sync_config) connection_config = prepare_config(sync_config.source.connection_specification) stream = connection_config[:is_stream] ||= false # The server checks the ConnectorQueryType. # If it's "ai_ml," the server calculates the payload and passes it as a query in the sync config model protocol. # This query is then sent to the AI/ML model. payload = parse_json(sync_config.model.query) if stream run_model_stream(connection_config, payload) { |message| yield message if block_given? } else run_model(connection_config, payload) end rescue StandardError => e handle_exception(e, { context: "OPEN AI:READ:EXCEPTION", type: "error" }) end
def run_model(connection_config, payload)
def run_model(connection_config, payload) response = send_request( url: OPEN_AI_URL, http_method: HTTP_POST, payload: payload, headers: auth_headers(connection_config[:api_key]), config: connection_config[:config] ) process_response(response) rescue StandardError => e handle_exception(e, { context: "OPEN AI:RUN_MODEL:EXCEPTION", type: "error" }) end
def run_model_stream(connection_config, payload)
def run_model_stream(connection_config, payload) send_streaming_request( url: OPEN_AI_URL, http_method: HTTP_POST, payload: payload, headers: auth_headers(connection_config[:api_key]), config: connection_config[:config] ) do |chunk| process_streaming_response(chunk) { |message| yield message if block_given? } end rescue StandardError => e handle_exception(e, { context: "OPEN AI:RUN_STREAM_MODEL:EXCEPTION", type: "error" }) end