class PDF::Reader::TransformationMatrix
caused by allocating too many unnecessary objects.
only 6 numbers. This is important to save CPU time, memory and GC pressure
Because the final column never changes, we can represent each matrix using
[ e f 1 ]
[ c d 0 ]
[ a b 0 ]
something like this:
co-ordinate systems in PDF files are specified using a 3x3 matrix that looks
def faster_multiply!(a2,b2,c2, d2,e2,f2)
[ e f 1 ] [ e f 1 ]
[ c d 0 ] x [ c d 0 ]
[ a b 0 ] [ a b 0 ]
Like this:
of the optimised methods are applicable.
in the final column are fixed. This is the fallback method for when none
A general solution for multiplying two matrices when we know all values
def faster_multiply!(a2,b2,c2, d2,e2,f2) newa = (@a * a2) + (@b * c2) newb = (@a * b2) + (@b * d2) newc = (@c * a2) + (@d * c2) newd = (@c * b2) + (@d * d2) newe = (@e * a2) + (@f * c2) + e2 newf = (@e * b2) + (@f * d2) + f2 @a, @b, @c, @d, @e, @f = newa, newb, newc, newd, newe, newf end
def horizontal_displacement_multiply!(e2)
[ 5 6 1 ] [ e2 0 1 ]
[ 3 4 0 ] x [ 0 1 0 ]
[ 1 2 0 ] [ 1 0 0 ]
Like this:
a simple horizontal displacement.
Optimised method for when the second matrix in the calculation is
def horizontal_displacement_multiply!(e2) @e = @e + e2 end
def horizontal_displacement_multiply_reversed!(a2,b2,c2,d2,e2,f2)
[ 5 0 1 ] [ 5 6 1 ]
[ 0 1 0 ] x [ 3 4 0 ]
[ 1 0 0 ] [ 1 2 0 ]
Like this:
a simple horizontal displacement.
Optimised method for when the first matrix in the calculation is
def horizontal_displacement_multiply_reversed!(a2,b2,c2,d2,e2,f2) newa = a2 newb = b2 newc = c2 newd = d2 newe = (@e * a2) + e2 newf = (@e * b2) + f2 @a, @b, @c, @d, @e, @f = newa, newb, newc, newd, newe, newf end
def initialize(a, b, c, d, e, f)
def initialize(a, b, c, d, e, f) @a, @b, @c, @d, @e, @f = a, b, c, d, e, f end
def inspect
def inspect "#{a}, #{b}, 0,\n#{c}, #{d}, #{0},\n#{e}, #{f}, 1" end
def multiply!(a,b=nil,c=nil, d=nil,e=nil,f=nil)
writing systems
displacement to speed up processing documents that use vertical
TODO: it might be worth adding an optimised path for vertical
that allocate fewer objects
NOTE: The if statements in this method are ordered to prefer optimisations
NOTE: see Section 8.3.3, PDF 32000-1:2008, pp 119
the PDF spec to ensure you're multiplying things correctly.
NOTE: When multiplying matrices, ordering matters. Double check
so this is a worthwhile optimisation
we don't need too. Matrices are multiplied ALL THE FREAKING TIME
WARNING: This mutates the current matrix to avoid allocating memory when
in a PDF transformation matrix.
the second matrix is represented by the 6 scalar values that are changeable
multiply this matrix with another.
def multiply!(a,b=nil,c=nil, d=nil,e=nil,f=nil) if a == 1 && b == 0 && c == 0 && d == 1 && e == 0 && f == 0 # the identity matrix, no effect self elsif @a == 1 && @b == 0 && @c == 0 && @d == 1 && @e == 0 && @f == 0 # I'm the identity matrix, so just copy values across @a = a @b = b @c = c @d = d @e = e @f = f elsif a == 1 && b == 0 && c == 0 && d == 1 && f == 0 # the other matrix is a horizontal displacement horizontal_displacement_multiply!(e) elsif @a == 1 && @b == 0 && @c == 0 && @d == 1 && @f == 0 # I'm a horizontal displacement horizontal_displacement_multiply_reversed!(a,b,c,d,e,f) elsif @a != 1 && @b == 0 && @c == 0 && @d != 1 && @e == 0 && @f == 0 # I'm a xy scale xy_scaling_multiply_reversed!(a,b,c,d,e,f) elsif a != 1 && b == 0 && c == 0 && d != 1 && e == 0 && f == 0 # the other matrix is an xy scale xy_scaling_multiply!(a,b,c,d,e,f) else faster_multiply!(a,b,c, d,e,f) end self end
def regular_multiply!(a2,b2,c2,d2,e2,f2)
[ e f 1 ] [ e f 1 ]
[ c d 0 ] x [ c d 0 ]
[ a b 0 ] [ a b 0 ]
Like this:
active code paths, but is here for reference. Use faster_multiply instead.
but slower due to excessive object allocations. It's not actually used in any
A general solution to multiplying two 3x3 matrixes. This is correct in all cases,
def regular_multiply!(a2,b2,c2,d2,e2,f2) newa = (@a * a2) + (@b * c2) + (0 * e2) newb = (@a * b2) + (@b * d2) + (0 * f2) newc = (@c * a2) + (@d * c2) + (0 * e2) newd = (@c * b2) + (@d * d2) + (0 * f2) newe = (@e * a2) + (@f * c2) + (1 * e2) newf = (@e * b2) + (@f * d2) + (1 * f2) @a, @b, @c, @d, @e, @f = newa, newb, newc, newd, newe, newf end
def to_a
def to_a [@a,@b,0, @c,@d,0, @e,@f,1] end
def xy_scaling_multiply!(a2,b2,c2,d2,e2,f2)
[ 5 6 1 ] [ 0 0 1 ]
[ 3 4 0 ] x [ 0 5 0 ]
[ 1 2 0 ] [ 5 0 0 ]
Like this:
an X and Y scale
Optimised method for when the second matrix in the calculation is
def xy_scaling_multiply!(a2,b2,c2,d2,e2,f2) newa = @a * a2 newb = @b * d2 newc = @c * a2 newd = @d * d2 newe = @e * a2 newf = @f * d2 @a, @b, @c, @d, @e, @f = newa, newb, newc, newd, newe, newf end
def xy_scaling_multiply_reversed!(a2,b2,c2,d2,e2,f2)
[ 0 0 1 ] [ 5 6 1 ]
[ 0 5 0 ] x [ 3 4 0 ]
[ 5 0 0 ] [ 1 2 0 ]
Like this:
an X and Y scale
Optimised method for when the first matrix in the calculation is
def xy_scaling_multiply_reversed!(a2,b2,c2,d2,e2,f2) newa = @a * a2 newb = @a * b2 newc = @d * c2 newd = @d * d2 newe = e2 newf = f2 @a, @b, @c, @d, @e, @f = newa, newb, newc, newd, newe, newf end