class ActiveSupport::MessageEncryptor
Experimental RBS support (using type sampling data from the type_fusion
project).
# sig/active_support/message_encryptor.rbs class ActiveSupport::MessageEncryptor < ActiveSupport::Messages::Codec def initialize: (String secret, ?nil sign_secret, **Hash options) -> void end
crypt.rotate old_secret, cipher: “aes-256-cbc”
the above should be combined into:
Though if both the secret and the cipher was changed at the same time,
crypt.rotate cipher: “aes-256-cbc” # Fallback to an old cipher instead of aes-256-gcm.
crypt.rotate old_secret # Fallback to an old secret instead of @secret.
generated with the old values will then work until the rotation is removed.
Then gradually rotate the old values out by adding them as fallbacks. Any message
crypt = ActiveSupport::MessageEncryptor.new(@secret, cipher: “aes-256-gcm”)
You’d give your encryptor the new defaults:
encryptor unless specified otherwise.
By default any rotated encryptors use the values of the primary
so decrypt_and_verify
will also try the fallback.
back to a stack of encryptors. Call rotate
to build and add an encryptor
MessageEncryptor also supports rotating out old configurations by falling
=== Rotating keys
Thereafter, verifying returns nil
.
Then the messages can be verified and returned up to the expire time.
crypt.encrypt_and_sign(doowad, expires_at: Time.now.end_of_year)
crypt.encrypt_and_sign(parcel, expires_in: 1.month)
time with :expires_in
or :expires_at
.
return the original value. But messages can be set to expire at a given
By default messages last forever and verifying one year from now will still
=== Making messages expire
crypt.decrypt_and_verify(token) # => “the conversation is lively”
crypt.decrypt_and_verify(token, purpose: :scare_tactics) # => nil
token = crypt.encrypt_and_sign(“the conversation is lively”)
a specific purpose.
Likewise, if a message has no purpose it won’t be returned when verifying with
crypt.decrypt_and_verify(token) # => nil
crypt.decrypt_and_verify(token, purpose: :shipping) # => nil
crypt.decrypt_and_verify(token, purpose: :login) # => “this is the chair”
Then that same purpose must be passed when verifying to get the data back out:
token = crypt.encrypt_and_sign(“this is the chair”, purpose: :login)
confined to a specific :purpose
.
By default any message can be used throughout your app. But they can also be
=== Confining messages to a specific purpose
crypt.decrypt_and_verify(‘not encrypted data’) # => ActiveSupport::MessageEncryptor::InvalidMessage
provided cannot be decrypted or verified.ActiveSupport::MessageEncryptor::InvalidMessage
exception if the data
The decrypt_and_verify
method will raise an
crypt.decrypt_and_verify(encrypted_data) # => “my secret data”
encrypted_data = crypt.encrypt_and_sign(‘my secret data’) # => “NlFBTTMwOUV5UlA1QlNEN2xkY2d6eThYWWh…”
crypt = ActiveSupport::MessageEncryptor.new(key) # => #<ActiveSupport::MessageEncryptor …>
key = ActiveSupport::KeyGenerator.new(‘password’).generate_key(salt, len) # => “x89xE0x156xAC…”
salt = SecureRandom.random_bytes(len)
len = ActiveSupport::MessageEncryptor.key_len
where you don’t want users to be able to determine the value of the payload.
This can be used in situations similar to the MessageVerifier, but
to you.
The cipher text and initialization vector are base64 encoded and returned
somewhere you don’t trust.
MessageEncryptor is a simple way to encrypt values which get stored
= Active Support Message Encryptor
def self.key_len(cipher = default_cipher)
def self.key_len(cipher = default_cipher) OpenSSL::Cipher.new(cipher).key_len end
def create_message(value, **options) # :nodoc:
def create_message(value, **options) # :nodoc: sign(encrypt(serialize_with_metadata(value, **options))) end
def decrypt(encrypted_message)
def decrypt(encrypted_message) cipher = new_cipher encrypted_data, iv, auth_tag = extract_parts(encrypted_message) # Currently the OpenSSL bindings do not raise an error if auth_tag is # truncated, which would allow an attacker to easily forge it. See # https://github.com/ruby/openssl/issues/63 if aead_mode? && auth_tag.bytesize != AUTH_TAG_LENGTH throw :invalid_message_format, "truncated auth_tag" end cipher.decrypt cipher.key = @secret cipher.iv = iv if aead_mode? cipher.auth_tag = auth_tag cipher.auth_data = "" end decrypted_data = cipher.update(encrypted_data) decrypted_data << cipher.final rescue OpenSSLCipherError => error throw :invalid_message_format, error end
def decrypt_and_verify(message, **options)
encryptor.decrypt_and_verify(message, purpose: "greeting") # => nil
encryptor.decrypt_and_verify(message) # => "bye"
message = encryptor.encrypt_and_sign("bye")
encryptor.decrypt_and_verify(message) # => nil
encryptor.decrypt_and_verify(message, purpose: "greeting") # => "hello"
message = encryptor.encrypt_and_sign("hello", purpose: "greeting")
match, +decrypt_and_verify+ will return +nil+.
The purpose that the message was generated with. If the purpose does not
[+:purpose+]
==== Options
avoid padding attacks. Reference: https://www.limited-entropy.com/padding-oracle-attacks/.
Decrypt and verify a message. We need to verify the message in order to
def decrypt_and_verify(message, **options) catch_and_raise :invalid_message_format, as: InvalidMessage do catch_and_raise :invalid_message_serialization, as: InvalidMessage do catch_and_ignore :invalid_message_content do read_message(message, **options) end end end end
def default_cipher # :nodoc:
def default_cipher # :nodoc: if use_authenticated_message_encryption "aes-256-gcm" else "aes-256-cbc" end end
def encrypt(data)
def encrypt(data) cipher = new_cipher cipher.encrypt cipher.key = @secret # Rely on OpenSSL for the initialization vector iv = cipher.random_iv cipher.auth_data = "" if aead_mode? encrypted_data = cipher.update(data) encrypted_data << cipher.final parts = [encrypted_data, iv] parts << cipher.auth_tag(AUTH_TAG_LENGTH) if aead_mode? join_parts(parts) end
def encrypt_and_sign(value, **options)
specified when verifying the message; otherwise, verification will fail.
The purpose of the message. If specified, the same purpose must be
[+:purpose+]
encryptor.decrypt_and_verify(message) # => nil
# 24 hours later...
encryptor.decrypt_and_verify(message) # => "hello"
message = encryptor.encrypt_and_sign("hello", expires_in: 24.hours)
elapsed, verification of the message will fail.
The duration for which the message is valid. After this duration has
[+:expires_in+]
encryptor.decrypt_and_verify(message) # => nil
# 24 hours later...
encryptor.decrypt_and_verify(message) # => "hello"
message = encryptor.encrypt_and_sign("hello", expires_at: Time.now.tomorrow)
verification of the message will fail.
The datetime at which the message expires. After this datetime,
[+:expires_at+]
==== Options
padding attacks. Reference: https://www.limited-entropy.com/padding-oracle-attacks/.
Encrypt and sign a message. We need to sign the message in order to avoid
def encrypt_and_sign(value, **options) create_message(value, **options) end
def extract_part(encrypted_message, rindex, length)
def extract_part(encrypted_message, rindex, length) index = rindex - length if encrypted_message[index - SEPARATOR.length, SEPARATOR.length] == SEPARATOR encrypted_message[index, length] else throw :invalid_message_format, "missing separator" end end
def extract_parts(encrypted_message)
def extract_parts(encrypted_message) parts = [] rindex = encrypted_message.length if aead_mode? parts << extract_part(encrypted_message, rindex, length_of_encoded_auth_tag) rindex -= SEPARATOR.length + length_of_encoded_auth_tag end parts << extract_part(encrypted_message, rindex, length_of_encoded_iv) rindex -= SEPARATOR.length + length_of_encoded_iv parts << encrypted_message[0, rindex] parts.reverse!.map! { |part| decode(part) } end
def initialize(secret, sign_secret = nil, **options)
Experimental RBS support (using type sampling data from the type_fusion
project).
def initialize: (String secret, ?nil sign_secret, **cipher | String | serializer | Module options) -> void
This signature was generated using 1 sample from 1 application.
If you don't pass a truthy value, the default is set using
was the default in \Rails 7.0 and below.
message first, then wraps it in an envelope which is also serialized. This
Whether to use the legacy metadata serializer, which serializes the
[+:force_legacy_metadata_serializer+]
pass +true+.
Encoding with URL and Filename Safe Alphabet" in RFC 4648), you can
If you want to generate URL-safe strings (in compliance with "Base 64
which are not URL-safe. In other words, they can contain "+" and "/".
By default, MessageEncryptor generates RFC 4648 compliant strings
[+:url_safe+]
Otherwise, the default is +:marshal+.
When using \Rails, the default depends on +config.active_support.message_serializer+.
these require the +msgpack+ gem.
not supported by JSON, and may provide improved performance. However,
ActiveSupport::MessagePack, which can roundtrip some Ruby types that are
The +:message_pack+ and +:message_pack_allow_marshal+ serializers use
possible, choose a serializer that does not support +Marshal+.
attacks in cases where a message signing secret has been leaked. If
not. Beware that +Marshal+ is a potential vector for deserialization
serializers support deserializing using +Marshal+, but the others do
The +:marshal+, +:json_allow_marshal+, and +:message_pack_allow_marshal+
to migrate between serializers.
ActiveSupport::JSON, or ActiveSupport::MessagePack. This makes it easy
will serialize using +Marshal+, but can deserialize using +Marshal+,
multiple deserialization formats. For example, the +:marshal+ serializer
The preconfigured serializers include a fallback mechanism to support
+:json+, +:message_pack_allow_marshal+, +:message_pack+.
several preconfigured serializers: +:marshal+, +:json_allow_marshal+,
object that responds to +dump+ and +load+, or you can choose from
The serializer used to serialize message data. You can specify any
[+:serializer+]
'aes-256-gcm'.
Digest used for signing. Ignored when using an AEAD cipher like
[+:digest+]
Default is 'aes-256-gcm'.
Cipher to use. Can be any cipher returned by +OpenSSL::Cipher.ciphers+.
[+:cipher+]
==== Options
ActiveSupport::MessageEncryptor.new('secret', 'signature_secret')
data. Ignored when using an AEAD cipher like 'aes-256-gcm'.
MessageVerifier. This allows you to specify keys to encrypt and sign
The first additional parameter is used as the signature key for
derivation function.
key by using ActiveSupport::KeyGenerator or a similar key
bits. If you are using a user-entered secret, you can generate a suitable
the cipher key size. For the default 'aes-256-gcm' cipher, this is 256
Initialize a new MessageEncryptor. +secret+ must be at least as long as
def initialize(secret, sign_secret = nil, **options) super(**options) @secret = secret @cipher = options[:cipher] || self.class.default_cipher @aead_mode = new_cipher.authenticated? @verifier = if !@aead_mode MessageVerifier.new(sign_secret || secret, **options, serializer: NullSerializer) end end
def inspect # :nodoc:
def inspect # :nodoc: "#<#{self.class.name}:#{'%#016x' % (object_id << 1)}>" end
def join_parts(parts)
def join_parts(parts) parts.map! { |part| encode(part) }.join(SEPARATOR) end
def length_after_encode(length_before_encode)
def length_after_encode(length_before_encode) if @url_safe (4 * length_before_encode / 3.0).ceil # length without padding else 4 * (length_before_encode / 3.0).ceil # length with padding end end
def length_of_encoded_auth_tag
def length_of_encoded_auth_tag @length_of_encoded_auth_tag ||= length_after_encode(AUTH_TAG_LENGTH) end
def length_of_encoded_iv
def length_of_encoded_iv @length_of_encoded_iv ||= length_after_encode(new_cipher.iv_len) end
def new_cipher
def new_cipher OpenSSL::Cipher.new(@cipher) end
def read_message(message, **options) # :nodoc:
def read_message(message, **options) # :nodoc: deserialize_with_metadata(decrypt(verify(message)), **options) end
def sign(data)
def sign(data) @verifier ? @verifier.create_message(data) : data end
def verify(data)
def verify(data) @verifier ? @verifier.read_message(data) : data end